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Abstract
In the 2018 midterm elections, West Virginia became the

first state in the U.S. to allow select voters to cast their bal-
lot on a mobile phone via a proprietary app called “Voatz.”
Although there is no public formal description of Voatz’s se-
curity model, the company claims that election security and
integrity are maintained through the use of a permissioned
blockchain, biometrics, a mixnet, and hardware-backed key
storage modules on the user’s device. In this work, we present
the first public security analysis of Voatz, based on a reverse
engineering of their Android application and the minimal
available documentation of the system. We performed a clean-
room reimplementation of Voatz’s server and present an anal-
ysis of the election process as visible from the app itself.

We find that Voatz has vulnerabilities that allow different
kinds of adversaries to alter, stop, or expose a user’s vote,
including a sidechannel attack in which a completely passive
network adversary can potentially recover a user’s secret bal-
lot. We additionally find that Voatz has a number of privacy
issues stemming from their use of third party services for
crucial app functionality. Our findings serve as a concrete
illustration of the common wisdom against Internet voting,
and of the importance of transparency to the legitimacy of
elections.

1 Introduction

In 2018, Voatz, a private Boston-based company, made history
by fielding the first Internet voting app used in high-stakes
U.S. federal elections. Mainly targeting overseas military and
other absentee voters, Voatz has been used in federal, state,
and municipal elections in West Virginia, Denver, Oregon,
and Utah, as well as the 2016 Massachusetts Democratic
Convention and the 2016 Utah Republican Convention [38].
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The company has recently closed a $7-million series A [22],
and is on track to be used in the 2020 Primaries.

In this paper, we present the first public security review of
Voatz. We find that Voatz is vulnerable to a number of attacks
that could violate election integrity (summary in Table 1). For
example, we find that an attacker with root access to a voter’s
device can easily evade the system’s defenses (§5.1.1), learn
the user’s choices (even after the event is over), and alter the
user’s vote (§5.1). We further find that their network protocol
can leak details of the user’s vote (§5.3), and, surprisingly, that
that the system’s use of the blockchain is unlikely to protect
against server-side attacks (§5.2). We provide an analysis of
these faults, and find that exploitation would be well within
the capacity of a nation-state actor.

While the introduction of Internet voting in the U.S. is rel-
atively new, the history surrounding electronic only voting is
not. In the wake of counting errors, recount discrepancies, and
uninterpretable ballots wreaking havoc during the 2000 U.S.
Presidential race, Congress passed the Help America Vote
Act (HAVA) [49], a bill targeted toward helping states move
away from outdated and problematic punchard-based systems.
The Election Assistance Commission (EAC), a new executive
agency created by HAVA, was charged with distributing these
funds, and has since provided over $3.3 billion to various
states to help improve election infrastructure [25].

Unfortunately, HAVA lacked stringent guidelines on what
replacement systems were allowed to be purchased. As a
result, many states acquired unvetted electronic-only voting
machines, known as Direct-Recording Electronic (DRE) sys-
tems. Numerous studies have since shown DRE systems that
lack a paper backup are extremely vulnerable to a wide range
of attacks, allowing adversaries to surreptitiously change the
outcome of an election [17, 27, 64].

Today, we are witnessing similar developments in response
to Russia’s interference in the 2016 election. Bills have been
introduced in both the Senate [41] and House [59] that aim to
provide funding to revamp election infrastructure. At the same
time, there has been renewed interest in cryptography due to
recent advances in accountable and transparent systems such
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Adversary Attacker Capability

Suppress Ballot Learn Secret Vote Alter Ballot Learn User’s Identity Learn User IP

Passive Network (§5.3)
Active Network (§5.3)
3rd-Party ID Svc. (§5.4)
Root On-Device (§5.1)
Voatz API Server (§5.2)

Table 1: Summary of Potential Attacks by Adversary Type: Here we show what kind of adversary is capable of executing what
sort of attack; e.g. a Passive Network adversary is capable of learning a user’s secret ballot, and the User’s IP. The viability
of some of these attacks are dependent on the configuration of the particular election, (the ballot style, metadata, etc.), see the
relevant section listed for explicit details.

as the blockchain [48], and the proliferation of mobile devices
carrying hardware-backed secure enclaves for cryptographic
operations as well as biometrics.

The result is increased speculation about how mobile de-
vices can be used to safely allow for voting over the Internet.
At the time of writing there are at least four companies at-
tempting to offer internet or mobile voting solutions for high-
stakes elections [47], and one 2020 Democratic presidential
candidate has included voting from a mobile device via the
blockchain in his policy plank [8]. To our knowledge, only
Voatz has successfully fielded such a system.

Unfortunately, the public information about Voatz’s system
is incomplete. Voatz’s FAQ [5], blog, and white paper [42]
provide only a vague description of their overall system and
threat model; Voatz claims it leverages some combination of
a permissioned blockchain, biometrics, and hardware-backed
keystores to provide end-to-end encrypted and voter verifi-
able ballots. However, despite calls to release a more detailed
analysis and concerns raised by many in the election security
community [24, 50], as well as elected representatives [54],
Voatz has declined to provide formal details, citing the need
to protect their intellectual property [60]. Worse, when a Uni-
versity of Michigan researcher conducted dynamic analysis
of the Voatz app in 2018, the company treated the researcher
as a malicious actor and reported the incident to authorities.
This resulted in the FBI conducting an investigation against
the researcher [36, 40, 43, 63].

This opaque stance is a threat to the integrity of the elec-
toral process. Given the contentious nature of high-stakes
elections,1 the stringent security requirements of voting sys-
tems, and the possibility of future interference by foreign
government intelligence agencies, it is crucial that the details
of any fielded election system be analyzable by the public.
The legitimacy of the government relies on scrutiny and trans-

1We refer to high-stakes elections as those where adversaries are likely
willing to expend resources to alter the course of an election. Certain elections,
like student governments, clubs, and online groups are generally considered
“low stakes,” where federal or municipal elections are “high-stakes.” This is
consistent with the research literature on the subject (see, e.g. [7]).

parency of the democratic process to ensure that no party or
outside actor can unduly alter the outcome.

Methodologically, our analysis was significantly compli-
cated by Voatz’s lack of transparency — to our knowledge, in
previous security reviews of deployed Internet voting systems
(see Switzerland [34], Moscow [30], Estonia [57], and Wash-
ington D.C. [62]), researchers enjoyed significant information
about the voting infrastructure, often including the system’s
design and source code of the system itself.

We were instead forced to adopt a purely black-box
approach, and perform our analysis on a clean-room re-
implementation of the server gained by reverse engineering
Voatz’s publicly available Android application. We show that,
despite the increased effort and risks to validity, our analysis
is sufficient to gain a fair understanding of Voatz’s short-
comings. In particular, we demonstrate that our attacks stand
up against optimistic assumptions for the unknown parts of
Voatz’s infrastructure (see §5). We hope that this work serves
as a useful discussion point for policy makers and future re-
searchers, and can be used to encourage system developers to
be more transparent.

The rest of the paper is organized as follows: We begin in
§2 with short background on the security requirements of elec-
tions, Voatz’s claims of security, and known work analyzing
Voatz. We continue in §3 by describing our reverse engineer-
ing methodology, and discus how we minimize threats to
validity. In §4, we illustrate Voatz’s system as discovered in
our methodology, including all parts of the voting process, the
server infrastructure, custom cryptography used, and provide
a brief discussion of factors we were unable to confirm in our
analysis. Next, §5 enumerates the attacks discovered in our
analysis of Voatz. We conclude with a discussion in §6 to pro-
vide lessons learned and recommendations for policymakers
in this space moving forward.

2 Background

In this section we describe some of the security requirements
commonly seen in proposed cryptographic voting systems.
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We then discuss the claims made by Voatz, and conclude by
providing an overview of prior analyses of Voatz.

Voting as a research subject in both applied vulnerability
discovery and in cryptography is not new. Below is a short de-
scription of security definitions commonly used in the voting
system literature.

Correctness and usability: To ensure the legitimacy of the
election, a voting system must convincingly show that all
eligible votes were cast as intended, collected as cast, and
counted as collected [15].

Secret Ballot: A secret ballot requires that 1) No voter is
able to prove her selections, and 2) no voter’s choices can
be surreptitiously released or inferred. The goal of a secret
ballot is to provide an election free from undue influence: if a
voter is able to prove the way they voted, they can sell their
vote, and if a voter’s preferences are leaked they may suffer
harassment and coercion [16].

End-to-End Verifiability: End-to-End (e2e) verifiable vot-
ing systems have the property that voters receive proof that
their selections have been included, unmodified, in the fi-
nal tallying of all collected ballots, without the need to trust
any separate authority to do so. There have been research
prototypes developed that provide such guarantees while
maintaining a secret ballot, using techniques such as visual
cryptography, homomorphic cryptography, invisible ink, and
mixnets [13, 19–21, 55].

2.1 Voatz’s Claims of Security
Although there is no public, formal description of their system,
Voatz does make a number of claims about their system’s
security properties via their FAQ [5]. We provide further
quotes and analysis on these claims in Appendix A, and a
short summary below:

Immutability via a permissioned blockchain: Voatz
claims that once a vote has been submitted, Voatz uses
“...blockchain technology to ensure that...votes are verified and
immutably stored on multiple, geographically diverse verify-
ing servers.” The FAQ goes into further detail, discussing the
provision of tokens for each ballot measure and candidate.2

End-to-End vote encryption: Voatz makes multiple refer-
ences to votes themselves being encrypted “end to end.” 3

To the author’s knowledge, there is no formal definition of
“end to end vote encryption;” for example, it is unclear where
the “ends” of an end to end encrypted voting scheme are. It
is worth noting that there exist homomorphic cryptography

2Sections “How do we know if the Voatz app can be trusted?" and “How
does the Voatz blockchain work?"

3Sections “If a user’s phone or mobile network is compromised, is
their vote compromised as well?" and “What happens if the smartphone
is hacked?"

schemes that tally votes over the vote ciphertexts, so that one
need only decrypt the an aggregate vote, maintaining individ-
ual voter privacy [14], but it is unclear from the FAQ if this is
what Voatz intends.

Voter anonymity: Voatz claims that “the identity of the voter
is doubly anonymized” by the smartphone and the blockchain,
and that, “Once submitted, all information is anonymized,
routed via a ‘mixnet’ and posted to the blockchain.” 4

Device compromise detection: Voatz claims to use multiple
methods to detect if a device has been jailbroken or contains
malware, and that “The Voatz app does not permit a voter to
vote if the operating system has been compromised.”5

Voter Verified Audit Trail: Voatz claims that voters receive
a cryptographically-signed digital receipt of their ballot af-
ter their vote has been submitted.6 The guarantees of such
a receipt are unclear, although, perhaps this is meant to pro-
vide similar guarantees as seen in the End-to-End verifiable
cryptosystems mentioned above.

2.2 Prior Scrutiny of Voatz
While we are the first to publish an in-depth analysis of
Voatz, others have raised concerns about their system, security
claims, and lack of transparency. Jefferson et al [37] compiled
a long list of unanswered questions about Voatz, including the
app’s use of a third party, Jumio, as an ID verification service.
Several writers observed the election processing and audit of
the Voatz pilot during the 2019 Denver Municipal elections,
and found that the main activity of the audit was to compare a
server-generated PDF of a voter’s ballot with the blockchain
block recording the same [35, 58]. Kevin Beaumont found
what appeared to be several Voatz service-related credentials
on a public Github account [11], and that the Voatz webserver
was running several unpatched services [12]. Voatz responded
citing a report from the Qualys SSL checker as evidence of the
site’s security [46], and later claimed that the insecure server
Beaumont identified was an intentionally-insecure “honeypot
operation" [61]. As a result of this public scrutiny, in Novem-
ber 2019, U.S. Senator Ron Wyden called on the NSA and
DoD to perform an audit of Voatz [54].

3 Experimental Methodology

As performing a security analysis against a running election
server would raise a number of unacceptable legal and ethical

4Sections “How is anonymity preserved?" and “How do I vote?"
5Sections “If a user’s phone or mobile network is compromised, is their

vote compromised as well," “What happens if the smartphone is hacked,"
and “If a user’s phone or mobile network is compromised, is their vote
compromised as well?"

6Sections “How do we know if the Voatz app can be trusted," “Is there a
paper trail," and “How can votes stored on the blockchain be audited?"
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concerns [53], we instead chose to perform all of our analyses
in a “cleanroom” environment, connecting only to our own
servers.7 Special care was taken to ensure that our static and
dynamic analysis techniques could never directly interfere
with Voatz or any related services, and we went through great
effort so that nothing was intentionally transmitted to Voatz’s
servers.8

To gain a better understanding of Voatz’s infrastructure,
we began by decompiling the most recent version of their
Android9 application as found on the Google Play Store as
of January 1, 202010 and iteratively re-implemented a mini-
mal server that performs election processes as visible from
the app itself. This included interactions involved in device
registration, voter identification, and vote casting. We used
two devices for our dynamic analysis and development: a
Voatz-supported Pixel 2 XL running Android 9, and a Voatz-
unsupported Xiaomi Mi 4i running the Lineage OS with An-
droid 8, both jailbroken with the Magisk framework [2].

In order to redirect control to our own server, we were
forced to make some small changes to the application’s con-
trol flow. To reduce threats to validity, we limited these mod-
ifications to the minimum necessary in order to redirect all
network communication. We:

1. Disabled certificate pinning and replaced all external
connections to our own servers;

2. Disabled the application’s built-in malware and jailbreak
detection. Details are available in §5.1.1; and,

3. Removed additional encryption between the device and
all still active third parties, re-targeted all communication
from these services with our own server, and reimple-
mented the necessary parts of their protocols as well.

While all of this could have been accomplished by stat-
ically modifying the program’s code, we instead opted to
dynamically modify or “hook” relevant parts of the code at
runtime. Modifications therefore required no changes to the
application code itself, only to code running on our test de-
vices, allowing for rapid development and transparency about
what was modified at each stage of our analysis.

Despite this lengthy description, our codebase is relatively
simple. The on-device hooking code consists of ~500 lines
of Java that leverages the Xposed Framework, a series of
hooking libraries that are well supported and popular in the
Android modding community. Our server implementation is
~1200 lines of code written in Python using the Flask web

7Unless otherwise specified, throughout this paper, any reference to com-
munication we performed with “a server” or “the server” refers to our own
server infrastructure.

8Indeed, at the time of analysis, Voatz’s servers appeared to be down
including for an unmodified app running on an supported and up-to-date
device.

9We did no analysis on and make no claims about Voatz’s iOS app.
10Version 1.1.60, SHA256
191927a013f6aae094c86392db4ecca825866ae62c6178589c02932563d142c1
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Figure 1: Voatz’s workflow as seen from the device.
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Figure 2: Dataflow between Voatz components and external
services. Dashed lines are believed to exist but have not been
directly observed.

framework. While we do intend to release our source, we are
withholding code to provide time until Voatz and others can
respond to the concerns raised in this paper.

4 Voatz’s System Design

In this section, we present Voatz’s infrastructure as recovered
through the methodology presented in §3. We begin with
an overview of the system §4.1, illustrating the process by
which a user’s device interacts with the app during all stages
of the voting process including Voatz’s custom cryptographic
protocol §4.1.1, user registration and voter verification §4.2,
and vote casting §4.3. Finally, we discuss all non-protocol
device-side defensive measures we discovered §4.4.

4.1 Process Overview

Figure 1 presents a diagram of the steps that occur in-app
from login to election voting. They are:
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(a) Initial screen. (b) Email and Phone. (c) OTP Verification. (d) Pin number. (e) First login. (f) Main screen.

Figure 3: The user registration process, connecting to our server reimplementation.

1. The device initiates a handshake with the server, creat-
ing a shared key which enables an extra layer of encryp-
tion beyond TLS (Box 1). Communication between the
device and Voatz server is described in more detail in
§4.1.1.

2. The user creates an account by providing their E-mail
address, phone number, and an 8-digit PIN (Boxes 2-4).

3. The user logs in with this PIN (Box 5).

4. The user verifies their identity, using Voatz’s integration
with a third-party service called Jumio (Box 6). The app
requests a scan of the user’s photo ID, a recording of
their face, and the user’s address, and then sends all of
this information to Jumio’s servers for verification and
OCR.

5. The user selects from a list of open elections, and then
marks and submits their ballot. Depending on the elec-
tion configuration, Voatz can allow “vote-spoiling,"11 so
this process may be repeated prior to the election closing.
(Boxes 7-8)

Communication Figure 2 shows the communication be-
tween components of Voatz and other entities. As we were
only able to directly observe communication involving the
Voatz app, the rest of this diagram is an attempted reconstruc-
tion based on documents released by Voatz [42] and by the
Denver Elections Division [29].

The three primary third-party services used by the Voatz
app are the identify-verification service Jumio, a crash report-
ing service Crashlytics, and a device security service Zim-
perium. Of these, the most significant is Jumio, which Voatz
relies on for ID verification, and to which the app sends sub-
stantial personal information (see §4.2).

11Vote spoiling refers to casting a new vote that invalidates all previously
cast ballots.

4.1.1 Voatz Server Handshake and Protocol

Voatz’s server is implemented as a REST application —
all communication between Voatz’s server and the appli-
cation occur as a series of JSON-encoded HTTPS GET,
PUT, and POST commands. The app’s REST server is
voatzapi.nimsim.com, with voatz.com only used for static
assets such as images and text. All parts of the protocol lever-
age the Android OS’s built-in TLS stack, and uses certificate
pinning to ensure that the incoming certificate is from a par-
ticular issuing Certificate Authority.

Next, on top of TLS, the system performs a “device hand-
shake” with the following steps:

1. The App generates 100 ECDSA SECP256R1 keypairs,
and sends the Server all 100 corresponding public keys.
The device saves only the 57th keypair (PKD,SKD).

2. The Server generates 100 ECDSA SECP256R1 key-
paris, selects the 57th (PKS,SKS), and performs the rest
of an ECDH key exchange to generate a shared secret
(SKecdh).

3. The Server generates AES-GCM parameters; a random
AES-GCM 256-bit symmetric key (SKaes), a random
16-bit nonce (N), and a Tag (T ).

4. The Server then sends the device:

• The 100 public keys generated above, including
the PKS as the 57th key.

• ECDH-Encrypt(SKecdh,SKaes||N||T )

5. Out of the 100 public keys sent by the Server, the
App selects the 57th pubkey (PKS), and finishes the
ECDH handshake to create the ECDH shared key
SKecdh. Finally, it decrypts and parses the AES-GCM
parameters(SKaes,N,T ).
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(a) Verification frag-
ment.

(b) Document select (c) Picture of an ID. (d) Face “selfie.” (e) Verification suc-
cess.

Figure 4: The voter verification process as seen from our experimental environment.

This handshake is performed every time the app is launched
for the first time, and, from this point forward in the app’s
execution, every communication between the App and the
Server is encrypted using the standard AES-GCM algorithm
by way of SKaes, in addition to the encryption provided by
TLS. Note that there is no authentication of the ECDSA keys
by the app, beyond the encapsulating TLS certificates. This
made it very simple to retarget the server — we replaced all
required URLs in-app to our own and followed the protocol.
Further, this renders the use of the handshake somewhat un-
clear, as it offers no protection against active MITM attacks
over the authentication already provided by TLS.

It also is worth mentioning that all but the 57th keys are
abandoned immediately on the device side — both the extra-
neous secret keys the device generated in the first step and the
public keys it receives from the server. We conclude that this
100-key exchange is likely a attempt at obfuscation, rather
than serving any useful purpose to the security protocol.

4.2 User Registration & ID Verification

After the app has completed the device handshake, the user
can begin the registration process, which can be seen in Fig-
ure 3. Here the user is asked to submit their email and phone
number, and perform a One Time Password operation via
SMS. Finally, the user selects an 8-digit PIN number which
is then sent to the server, and used extensively in user authen-
tication.

If the user has a fingerprint registered with their device,
they are given the option to “enroll” their fingerprint as an
alternative authentication mechanism. Effectively, this works
by storing the PIN on-disk, encrypted using a key biometri-
cally tied to the user’s fingerprint via the Android Keystore
API.

The Android Keystore is a system service that, if used cor-

rectly,12 will perform various cryptographic operations on
behalf of the application, on application-level data, without
exposing the requisite key material to the application’s host
memory.13 Further, when supported by the device’s hardware,
these device-level keys are stored in the manufacturer’s pro-
tected hardware, and can be made to require the user to enter
in their device password or fingerprint before they are used.

After registration, the user is asked to log in via the PIN
(or fingerprint decryption of the PIN). In addition to the PIN,
there are four pieces of information sent to the server to au-
thenticate the user at log in: a unique device ID generated via
Android’s ANDROID_ID system,14 a customer ID number,
a “nextKey” value, and an “auditToken”. The nextKey and
auditToken are originally received from the API server, are
never modified except when updated by the server, and do not
appear to be used in any device-side cryptography. How these
authentication parameters are stored is explored in §4.4.

After authentication, the user may still need to provide
some proof of identity, which requires visiting the verification
menu from the main screen (Figure 4a). When the user selects
the identity option, the app launches Jumio’s sub-activity to
select a document type (Figure 4b15). The user is prompted to
take a photo of their ID or Passport (4c), and to take a selfie
photo (4d), after which a dialog prompts the user for their
registered voting address (not pictured). The app then uploads
data to Jumio’s server, including the user’s photo, the voter’s
name, address, and photo ID (4e).16 Finally, after receiving a

12In §5.1.2, we will see that the app does not use the Keystore correctly.
13See Android’s Keystore documentation for details [9].
14See [10] for more information about Android’s local device UUIDs.
15These options are based on metadata about available documents sent

from our mock implementation of Jumio’s servers. This screen may differ
when the app is connected to the genuine Jumio servers.

16Furthermore, Jumio itself has disclosed that it uses a third party, Facetec,
to help analyze the video selfies [6]. As we do not have visibility into their ser-
vices, we cannot confirm whether or not Jumio actually transmits information
to Facetec-controlled servers.
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(a) Event selec-
tion.

(b) Ballot. (c) Question. (d) Review. (e) Submission. (f) PIN Decryp-
tion.

(g) Success.

Figure 5: The voting process as seen in a mock election we created for this experiment.

response from Jumio’s server, the app sends a subset of the
user’s data to Voatz’s server as well.

It is worth noting that the small, translucent logo in the
bottom right corner of the photos taken during this process
(Figures 4c, 4d) appears to be the only in-app indication to
the user that Jumio exists. This is the only way by which a
user might be aware that sensitive data is being sent to a 3rd
party.

4.3 Vote Casting

After the user is verified, the app queries the server for con-
figuration data relating to what events the voter is allowed to
participate in, activating a menu for the user to select from
available events (see Figure 5). This configuration data in-
cludes all events to which the voter has access, those event’s
ballots, each ballot’s particular questions, and the options
available for those questions.

The voter begins by selecting an event (5a), and is then
able to view questions associated with these particular events,
select responses (or no response at all, depending on the event
configuration), and submit their response to the server. At the
point of submission, the user is again asked to decrypt their
PIN (5e), which is used as a final authentication mechanism
before the ballot is submitted to the server.

It is important to note that the vote is not submitted directly
to any blockchain-like system, and is instead submitted via
this API server. Additionally, although the user is asked to
authenticate before submission, beyond the MAC associated
with the AES-GCM algorithm and enclosing TLS session, the
text of the vote itself is not otherwise signed. The only indica-
tion of blockchain-like tokens being submitted or exchanged
is the “auditToken”, but this string is never altered by the app,
and appears to be a single, static value. Figure 6 shows the
entirety of what is sent to the server, AES encrypted, after a
user submits their vote.

1 { "voteData" : [
2 {
3 "summary": "Best cat?" ,
4 " questionId " : "1",
5 "isRCVFlag": false ,
6 "isRCV": false ,
7 " description 1": "bogus desc" ,
8 " statements " : [
9 {

10 "summary": "Statement Summary",
11 " statementId " : "Statement ID",
12 " description 3": " Description 3",
13 "choices" : [
14 {
15 " choiceDetails " : {
16 "imageUrl": " https : // bit . ly /36DJbC4",
17 "webUrl": " https : // bit . ly /36DJbC4"
18 },
19 "choiceId" : "1",
20 " description 1": "^" ,
21 " nonSelectable " : false ,
22 " description 2": "^" ,
23 " description " : "Short"
24 }
25 ] ,
26 " description 1": "This is a sub−description" ,
27 " description " : "This is a description of the event" ,
28 "maxSelect": "1",
29 "gender": "F",
30 " description 2": " Description 2",
31 " district " : "Statement District "
32 }
33 ] ,
34 " description 3": "bogus desc" ,
35 " description 2": "bogus desc" ,
36 " description " : "bogus desc"
37 }
38 ] ,
39 "auditToken": "SomeAuditTokenValue",
40 "controlNumber": "1",
41 "customerId" : 267732387,
42 "eventId" : 1 }

Figure 6: The above is the entirety of the decrypted payload
for a vote submission in our synthetic election.
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4.4 Device-Side Defensive Measures

In the process of performing our analysis we discovered that
Voatz employs a number of obfuscation techniques, leverages
a third party virus scanning service, and uses an encrypted
database to protect locally stored sensitive data. We explore
each below:

On-disk encrypted database: After the registration has
been completed, the user’s login credentials (the nextKey,
auditToken, and customer ID number), as well as the voter’s
entire vote history, are stored in an encrypted database us-
ing the Realm database framework [3]. When Voatz’s app
attempts to query the database, the Keystore asks the user to
authenticate via a fingerprint or PIN (see Figure 5f), before
performing the required operations.

The key for the database is linked directly to the user’s PIN;
specifically, the system runs PBKDF2 with SHA1 over the
PIN to generate the key. Recall that this allows the system
to use a fingerprint as an alternative method of decrypting
the database — At log in, the app can authenticate via the
fingerprint to decrypt the PIN, or use the PIN directly to
decrypt the database and gain access to the rest of the app.

Third-party Malware Detection (Zimperium): Voatz
leverages a third-party antivirus solution called Zimperium.
At initialization time, the Voatz app loads Zimperium’s code
as a separate service and registers a series of callbacks that
will alert the API Server if Zimperium detects a threat. This
message includes the details of the threat, the user ID, and
device ID, and the IP address of the offending device.

Zimperium’s scans include (but are not limited to) known
exploit proofs of concept, known malware, and indicators
that the user has installed known superuser tools indicative
of a rooted / jailbroken device. Additionally, Zimperium will
trigger callbacks if the user appears to have enabled Android’s
local debugging features such as remote adb debugging.

Partial Code Obfuscation and Packing: Without the de-
veloper taking extra precautions, Android apps may be read-
ily unpacked and decompiled to near the original source via
easy to use tools such as APKTool [1] and JADX [56]. How-
ever, much of the Voatz app is obfuscated using a packer that
presents several barriers to analysis.

First, many of the classes and function names were re-
named to random Unicode strings. Beyond making the re-
sulting decompilation more difficult to read, this obfuscation
also caused APKTool to crash, while JADX successfully com-
pleted decompilation, but left many of the resource files (in-
cluding application strings and images) unreadable. Voatz’s
app also contained a few zip files that appear to perform a
zip bomb attack [28], which defeats some implementations
of unzip. Finally, all included 3rd-party native libraries for

ARM failed to open in our version of IDA, although it is un-
clear if this was an active defensive measure as they were
successfully disassembled using Ghidra.

We were able to defeat the obfuscation by intensive manual
analysis and, in some cases, were aided in recovering the
original variable names by the app itself. First, the app uses
many libraries which internally depend on Java reflection,
rendering the obfuscator unable to rename any classes or
methods referenced in this way. Second, the app and some of
its libraries are written in Kotlin. While some Kotlin idioms
do not decompile easily to Java, the use of Kotlin overall
aids reverse-engineering — the Kotlin compiler inserts many
runtime checks into the code, each including a string with an
error message to display in case of failure. The class, function,
and variable names are often stored in these strings.

String Obfuscation To further complicate static analysis,
the strings that control cryptographic parameters of the device
handshake (e.g. “AES-GCM”) are obfuscated with an XOR-
based scheme and then automatically deobfuscated at runtime.
As the strings hidden in this way include error messages
generated by the Kotlin compiler, this appears to be the result
of an automated tool that had been enabled for only these
particular methods.

4.5 Unconfirmed Portions of the Process
As we lack access to Voatz’s servers and deliberately avoided
any interaction with them, there are unfortunately a few in-
stances of where we are unable to confirm how certain third-
party actors in the system behave.

Zimperium execution confirmation: Zimperium may
communicate back to its own servers confirming that the
service is running, and then communicate if Zimperium is
active directly to Voatz. To the best of our knowledge, there is
no public documentation that suggests this is how Zimperium
works, and we find no indication from the callbacks associ-
ated with Zimperium that this is occurring. Further, any such
mechanism could be similarly subverted with the techniques
applied in §5.1.1, though likely with more effort.

Jumio voter confirmation: Jumio’s documentation dis-
cusses at length the ability to have Jumio’s servers communi-
cate for out-of-band verification of a user. Since this is well
documented, we therefore assume that Voatz’s API server is
communicating directly with Jumio for ID verification.

Ballot Receipts and the Blockchain: According to a Voatz
whitepaper, votes are recorded on a 32-node permissioned
blockchain spread across multiple Amazon AWS and Mi-
crosoft Azure datacenters [29]. Footage of the audit of the
2019 Denver Municipal elections shows that the auditing
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process consists of manually decrypting blockchain blocks
indicating transactions, obtaining several fields including a
hash of the voter’s choices. The auditor then manually com-
pares the hash via a lookup table to a PDF displaying the
voter’s choices. These PDFs are allegedly also printed out
by the election authority as a paper record, and are redacted
versions of the receipt E-mailed to voters. While we know
that, in the Denver election, many voters manually replied to
indicate that they received a receipt, there is no evidence that
Voatz can automatically verify receipt delivery [35].

In our exploration of the code, we find no indication that
the app receives or validates any record that has been authen-
ticated to, or stored in, any form of a blockchain. We further
found no reference to hash chains, transparency logs, or other
cryptographic proofs of inclusion. We conclude that any use
of a blockchain by Voatz likely takes place purely on the
backend, or in the receipt stage via the use of some other
mechanism.

The only references to voter receipts in-app come from a
dialog that requests a passcode from the server, and an (ap-
parently unimplemented) QR code reader. The text of the
voter receipt dialog appears to confirm that ballot receipts are
indeed sent to the voter via email, and encrypted with a pass-
code (see Figure 7). Voatz’s QR code reader has functional
code for an out-of-band method of receiving organization IDs,
which allows the voter to participate in particular events, and
a largely unimplemented stub for verifying a vote — attempt-
ing to scan a QR code that would start the process of vote
verification will result in the “not yet supported” message
presented in Figure 7.

Figure 7: Left: the password request screen. Right: the
QR code capture screen; note the popup indicating that the
VOTE_VERIFICATION QR code type is unimplemented.

5 Analysis and Attacks

In this section, we explore various attacks assuming the role
of an adversary that has control over particular parts of the
election system. This includes three adversaries with various
levels of access to individual parts of the overall infrastruc-
ture:

1. An attacker that has gained control of a user’s device,

2. An attacker that has gained control over Voatz’s API
server, and

3. A network adversary that can intercept all network activ-
ity between voter’s device and the API server, but has no
key material or other access to the voter’s and Voatz’s
systems.

We believe these adversaries to be credible given the high-
stakes nature of the elections in which Voatz is intended to be
used, and the resources of the associated attackers. Gaining
root control of a user’s device can happen through any number
of means requiring various levels of skill — via malware, an
intimate partner or spouse, as part of a border crossing, etc.
Network adversaries could come in similarly many forms,
including those that exploit a user’s home router (which are
notoriously insecure [32, 33]), the unencrypted coffee shop
wifi a user attempts to vote from, or the user’s ISP.

Including Voatz’s API server in this analysis is useful for
a number of reasons. While accessing Voatz’s server may
be more difficult than the user’s device and/or the network
infrastructure between the server and the user, if the use of
Voatz were to be raised to the point that their userbase may
alter the outcome of an election, it is not impossible for them
to be the target of nation-states, at which point, it is also not
outside of the realm of possibility that intelligence agencies
would expend considerable resources, leveraging undisclosed
0-day vulnerabilities, espionage, coercion, or physical attacks,
to gain access to crucial systems or key material. Further, a key
promise of the blockchain is that it provides an environment
where the voter and election authority may be able to trust the
system, rather than just Voatz, that the election was conducted
correctly.

Assumptions & Threats to Validity As we lack concrete
implementation details about the server infrastructure or back-
end, we cannot make assumptions about what Voatz logs
to their blockchain, the operational security of their servers,
blockchain, or cryptographic keys used.

To limit risks to validity, our analysis will make no assump-
tions about the state of the server beyond what we can glean
from the app itself, and we will assume that all interactions, in-
cluding all cryptographic activities as seen from the device in
§4.1.1, are logged to the blockchain, and that these blockchain
records are secure, monitored, and immutable. This includes
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all ciphertexts in the protocol, as well as any randomness used
in the algorithms.

Note that this is an optimistic analysis of the use of the
blockchain in this system. It is unlikely that every interac-
tion is stored via the blockchain, and their own documen-
tation of the West Virginia election indicates that the veri-
fying servers are split equally between Amazon AWS and
Microsoft’s Azure — indicating that their scheme is vulnera-
ble to Microsoft or Amazon surreptitiously adding resources
and executing a 51% attack, or performing a selfish mining
attack that requires only 1/3 of the compute [26].

Nonetheless, we focus on what is provable given our lim-
ited access to the system, and show that this analysis is suffi-
cient to demonstrate a number of significant attacks.

5.1 Client-Side Attacks
We find that an attacker with root privileges on the device can
disable all of Voatz’s host-based protections, and therefore
stealthily control the user’s vote, expose her private ballot, and
exfiltrate the user’s PIN and other data used to authenticate to
the server.

5.1.1 Defeating Host-based Malware Detection

The Zimperium SDK included within Voatz is set to detect
debugging and other attempts to modify the app, and to collect
intelligence on any malware it finds. By default, it would have
detected our security analysis, prevented the app from running
normally, and alerted the API server of our actions.

As mentioned in §4.4, Zimperium communicates with the
Voatz app, and ultimately with Voatz’s API server, via a set of
callbacks initiated when the app loads. Defeating Zimperium
was therefore as simple as overriding its entry points to pre-
vent the SDK from executing. The hooking utilities provided
by the Xposed Framework allow us to divert control flow with
minimal effort — Figure 8 shows the code to disable one of
its two entry points; in total, disabling Zimperium required
four lines of code, and is imperceptible to the user.

We assume that there is no out-of-band communication
between Zimperium and Voatz, and find no indication in ei-
ther Zimperium’s documentation or in our analysis of the app
that this service exists. Additionally, if such communication
does exist, it would only marginally increase the effort re-
quired to defeat it; one would need to hook other parts of
Zimperium that perform detection, or communicate with their
server directly.

5.1.2 Full control over the user, on or off device

Once host-based malware detection has been neutralized, an
attacker with root privileges has the ability completely control
the user, what the user sees, and leak the user’s ballot decisions
and personal information.

argClass = loadClass("com.zimperium.DetectionCallback");

findAndHookMethod("com.zimperium.ZDetection", loader,
"addDetectionCallback", argClass, new XC_MethodHook() {
void beforeHookedMethod(MethodHookParam p) {
p.setResult(null); // prevents method from running

}
});

Figure 8: Code to disable the Zimperium security SDK,
slightly simplified

Stealing User Authentication Data: Despite being en-
crypted with keys that leverage the Android Keystore, the
user’s PIN and other login information not stored in protected
storage, and do pass through the application’s memory. Exfil-
trating these key pieces of information would allow a remote
attacker to impersonate the user to Voatz’s servers directly,
even off-device.

We find that an attacker with root access to the device can
surreptitiously steal the PIN and the rest of Voatz’s authen-
tication data. In the process of performing our analysis, we
developed a tool that intercepts and logs all communication
between the device and the server before it is encrypted with
SKaes, as well as before data is encrypted and stored in the
local database. This allowed us to see, in plaintext, both the
user’s raw PIN and other authentication data. While our proof
of concept stops at logging this information via Android’s sys-
tem debug features (adb logcat), it would be trivial broad-
cast these requests over the network, modify them, or stop
them from occurring at all.

An attacker need not necessarily wait until the user decides
to vote — offline attacks against Voatz’s scheme are also
entirely possible. Recall that the database requires only the
user’s PIN to unlock, and in no way limits the number of
times this PIN might be attempted. Worse, the app artificially
limits the PIN to exactly 8 numeric characters, meaning that
there are only 100,000,000 possible PINs.17 A brute force
attack can therefore easily rediscover the PIN by repeatedly
generating keys and attempting to decrypt the database, re-
covering the PIN, login information, and vote history of the
user all at once.18

Such a brute force attack can be performed fairly rapidly.
Note that an attacker need not do this on-device, as the en-
crypted database file can be exported. We implemented a
prototype of this attack and confirmed that an attacker can
brute-force the key in roughly two days on a relatively re-
cent commodity laptop. We conclude that such a threat is
viable, particularly if the same installation of Voatz will be
used across multiple elections.

17Voatz also forbids PINs containing 3 consecutive identical digits, which
eliminates ~5% of these.

18A salt is also required to unlock the database. This is stored on disk,
unencrypted, in the app’s shared preferences file.
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Stealth UI Modification Attack: It is straightforward to
modify the app so that it submits any attacker-desired vote,
yet presents the same UI as if the app recorded the user’s sub-
mitted vote. If the election configuration allows vote-spoiling,
there is also a variant of this attack which has been demon-
strated on the Estonian e-voting system: allow the user to
vote normally, but change the vote once the user closes the
app [57].

Similarly, the attacker could stealthily suppress voter’s
choices if they select an undesired candidate, but continue to
show the verification dialog as if the vote had successfully
been cast. To the election authority, this might be indistin-
guishable from the voter failing to submit a ballot. To the
voter, this is indistinguishable from correctly voting, at least
until the authority releases voter records for that election.19

5.2 Server Attacks
We find that, assuming the optimistic use of the blockchain
discussed in the threat model, Voatz’s server is still capable of
surreptitiously violating user privacy, altering the user’s vote,
and controlling the outcome of the election.

In particular, we find that the protocol discussed in §4.1.1
provides no guarantees against the API server actively alter-
ing, viewing, or inventing communication from the device; the
server can execute an active MITM attack between the user
device and whatever blockchain or mixnet mechanism exists
on the other end. Note that there is no other cryptographic
operation performed between the device and the server at
any point other than the AES encryption, including any sort
of cryptographic signing by the device or the device’s Key-
store. If server performs these cryptographic operations itself
— that SKaes is available to the server — it can decrypt the
user’s ballot before it is submitted to any external log and
convincingly re-encrypt any value to be sent to the log.

Even if SKaes is not available to the server — for example,
if all cryptographic operations are performed in a Hardware
Security Module (HSM) — it must then at least have access
to the unencrypted TLS stream, and so it is still possible for
the server to execute an active MITM attack.

Recall there is no public key authentication performed as
a part of the device handshake, and there is no proof or veri-
fication by the device that these interactions are ever logged
on the blockchain. The server can therefore terminate the
connection before the HSM and arbitrarily impersonate the
user’s device by, e.g., replaying the entire device handshake
and all future communication back through the HSM to the
blockchain.20

19In the U.S., public records often list which voters participated in any
given election.

20Perhaps this hypothetical HSM also contains the TLS keys required
to terminate the connection, and performs all cryptographic operations in
the enclave. However, all communication is encrypted with SKaes, including
those that require queries against databases of users, it is therefore unclear
that this is the case, but, even so, the server is capable of performing a number

Note that, given these attacks, it is unclear if there exists
a scheme in which a receipt can convincingly prove that the
correct vote was logged.

5.3 Network Adversary

(a) Question.

Choice = {
" choiceDetails " : {"imageUrl":SHORT_IMG,

"webUrl":SHORT_IMG},
"choiceId" :"1",
" description " :"Short" ,
" description 1":"^" ,
" description 2":"^" ,
" isWriteIn " : False ,
" nonSelectable " : False

}
Choice2 = {

" choiceDetails " : { ’imageUrl’:
LONG_IMG_URL, ’webUrl’ :
LONG_IMG_URL},

"choiceId" :"2",
" description " :"Long Description !" ,
" description 1":"See? It ’s super long .

REALLLY long.111111",
" description 2":"EPICALLY

LOOOOOOOOOOOOONG...."
" isWriteIn " : False ,
" nonSelectable " : False

}

(b) Corresponding JSON for
each ballot option.

Figure 9: Voting sidechannel attack explained. All descrip-
tions are generated by our server.

We find that an adversary with the ability to view the user’s
network activity, without access to any key material, can
still infer how the user voted. Specifically, in this section
we demonstrate that the app leaks the length of the plain-
text, which can allow an attacker to learn, at minimum, which
candidate the user voted for.

The vulnerability stems from the way in which a ballot
is submitted to the server after a user is done selecting their
options. As shown in Figure 6, the “choices” list in a vote
submission contains only the options selected by the user,
and includes with that choice the entirety of the metadata
provided by the server about that candidate. This, in turn,
causes the length of the ciphertext to vary widely depending
on the choices of the voter.

Figure 9b shows the differences in metadata sent to and
from the server between the two candidates as displayed
in-app in Figure 9a. Note that the URLs provided are also
potentially variable length, and the length of those URLs is
completely imperceptible to the user.

We verified this vulnerability by setting up a proxy between
our app and our API server and recording all communication
via tcpdump. We then used the app to participate in an elec-
tion twice, once voting for the “short” candidate and once for

attacks on the user. See §5.3.
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Figure 10: HTTPS encrypted packet lengths immediately after
a user submits a vote, in order sent. Note the size of the “short”
and “long” candidate in packet 1.

the “long” candidate. Figure 10 shows the resulting ciphertext
sizes in bytes (specifically, the TLS Application Data field’s
length per packet) in both runs — in both cases the second
packet (packet #1) corresponds to the actual vote submission,
where the rest are other miscellaneous protocol queries in-
volved in vote casting and user maintenance. The length of
the encrypted packet clearly leaks which candidate was se-
lected, is easily distinguishable in its size from other packets
in the protocol, and, importantly, its size is unaffected by any
parameters that vary by user.21

It is worth noting that, ironically, Voatz’s additional cryp-
tography exacerbates this vulnerability. In typical HTTPS
connections, the plaintext is gzip-compressed prior to being
encrypted, which offers some privacy in that block-cipher
padding is potentially more likely to hide the size differences
between plaintexts, or at least obfuscate the plaintext size.
Because Voatz encrypts outgoing data before it reaches the
HTTPS layer, and compressing an encrypted packet will not
reduce its size, the compression step is rendered immaterial
and the size of the final packet’s ciphertext is kept propor-
tional to the size of the plaintext. The result is that (although
the figures presented here do intentionally add text to exagger-
ate the affect for pedagogical purposes), a modest few bytes’
difference can be significant.

For this attack to work, we make the following two assump-
tions:

1. That the attacker can themselves use the app and learn
the ballot options presented (perhaps by themselves vot-
ing and gaining access to the JSON representation of the
ballot options).

2. That the server does not somehow send the ballot options
to the device padded to be of equal length.

21The size of the ciphertext will not vary depending on the user, but may
vary minimally depending on the phone’s TLS implementation.

The first assumption is likely not an issue given the attacks
presented in §5.1. For example, an attacker need only be a
registered voter, or have previously exploited a registered
voter’s device and witnessed their ballot options, or simply
witnessed a voter casting a ballot in a particular way and
recording the result.

The second assumption is also a likely non-issue for an
attacker, as we find little evidence that the app is defending
against this attack — there is no code to remove extraneous
symbols or whitespace from ballot questions before they are
presented, and other transactions that involve sensitive user
information are fully generated device-side and largely inde-
pendent of the server (like the user’s name, age, and location),
are also not padded. Finally, even if this assumption does not
hold, a limited version of the attack is still viable: if the user
votes for no candidate and skips the question completely, the
device sends the server an empty list.

Note that this sidechannel allows the attacker to detect the
voter’s intent before the ballot arrives at the server. If the
attacker is in a position to block packets on their way to the
server, (as, for example, an ISP or network owner would), the
adversary could intentionally drop this packet and adaptively
stop the voter from submitting their ballot. To the user, this
would look like a service interruption on Voatz’s end, and
may degrade the experience enough to stop the voter from
casting their ballot at all.

5.4 Other Observations and Weaknesses

Privacy and geostrategic concerns: To sum up the privacy
impact of Voatz, information sent to Voatz and/or third parties
associated with this service include the user’s email, physical
address, exact birth date, IP address, a current photo of them-
selves, their device’s model and OS version, and preferred
language. Identifying data is provided to Jumio and Voatz,
and, to the best of our knowledge, Voatz makes no representa-
tions to its users about how long such information is retained,
stored, or if it is shared beyond a general privacy policy that
does not explicitly discuss Jumio. Worse, if Jumio were to
prove truly malicious, it is possible it could refuse to validate
particular users at all. Furthermore, we note that the app re-
quests permissions to read the user’s GPS upon first login,
though we have not identified what exactly the app does with
this information.

One of the reported uses of Voatz’s software is UOCAVA
(overseas military) voters, indicating that information leaked
about its users could also potentially provide adversaries with
information about US military deployments. Note that, in
addition to the PII sent to Voatz and Jumio, the voter’s IP
address alone can carry information about the user’s location,
so all third parties may learn roughly where the user is (Jumio,
Crashlytics, Zimperium). The result is that these services may
learn rough troop movements from their use of the app.

Finally, Voatz makes extensive use of code from a variety of
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third party developers. We provide a full listing in Appendix
B, and find that the App includes over 22 libraries provided
by 20 different vendors.

Risks of Sideloaded Malware & Unsupported Devices
Voatz’s security requires that the app only be available on
certain devices, in particular modern phones with up-to-date
operating systems. They implement this via app store prefer-
ences; the Google Play Store will only allow certain device
models to install the app, and will not make the app visible if
the device does not meet Voatz’s criteria.

This enables attackers to trick users of unsupported devices
into installing an app containing malware by establishing a
legitimate-looking website with information about how to
vote and directing the reader to install a malicious version of
Voatz’s app. This is not a hypothetical concern — after the
popular game Fortnite was released outside the Play Store
to avoid Google’s fees, malware authors tricked many naive
users using very similar tactics [18].

Susceptibility to Coercion: As mentioned in 4.2, the app
never requires the voter to re-enter their PIN at log-in after
registration, and does not appear to show the user if a ballot
has been re-voted or spoiled.

This indicates that the app leaves users vulnerable to coer-
cion attacks. Consider a voter asleep or otherwise incapaci-
tated. Assuming the attacker has physical access to the device
and user, and that the device is unlockable via the user’s fin-
gerprint, an attacker would easily have the ability to cast a
vote on behalf of the user. This threat model is very relevant
in the case of intimate partner abuse [23, 45].

5.5 Voter Verified Receipt
Outside of the password request feature mentioned in §4.3,
there is no mention of the receipt in the app, and it does not
appear that the app itself provides any method of verifying
that the ballot was counted in the blockchain of record — or,
beyond Voatz’s documentation, that any such blockchain of
record exists.

In any event, there are significant practical challenges in
providing such receipts. In the case that the app did present
some sort of concrete cryptographic verification, this could
allow the user to prove the way they voted — violating the
requirement of a secret ballot and allowing the voter to sell
her vote. If the receipt arrives as an encrypted PDF, it is un-
clear how Voatz can verify to the user that the encrypted
PDF actually came from Voatz, and, if it is verified in-app,
how one would protect the verification process from the UI
modification attacks presented in §5.

Finally, there are significant usability concerns of the re-
ceipt that require analysis — What remediation does a user
have if the ballot and receipt do not match? How does a user
know when to expect a receipt? If the receipt is sent or delayed

until post-certification of the election, is there no remediation
of a mistake? Transparency in design here would help voters
understand these tradeoffs, and without further information, a
full analysis of these receipts is not possible.

6 Discussion & Conclusion

Responsible Disclosure: Given the heightened sensitivity
surrounding election security issues, and due to concerns
of potential retaliation, we chose to alert the Department of
Homeland Security (DHS) and anonymously coordinate dis-
closure through their Cybersecurity and Infrastructure Secu-
rity Agency (CISA). Before publicly announcing our findings,
we received confirmation of the vulnerabilities from the ven-
dor, and, while they dispute the severity of the issues, appear
to confirm the existence of the side channel vulnerability,
and the PIN entropy issues22. We also spoke directly with
affected election officials in an effort to reduce the potential
for harming any election processes.

The Usefulness of Bug Bounties: As previously men-
tioned, we use the most recent version of the app as of January
1, 2020. Voatz provides a “bug bounty” version of the app via
a third party called HackerOne [4]. We chose not to examine
this version of the app for several reasons.

First, choosing to evaluate this bounty app alone would
introduce additional threats to validity, and as the differences
between this version and the ones that have been fielded are
unclear, we chose to err on the side of realism. Note that,
being obfuscated in a way that requires lengthy manual pro-
cesses to undo, the second app would have required nontrivial
additional effort to analyze.

Second, crucially, the bounty does not provide any addi-
tional helpful insight into Voatz’s server infrastructure, nor
does it provide any source or binary for the API server to test
against. Indeed, when this decision was made, both Voatz’s
bug bounty app and the Google Play app failed to connect.

Finally, it is unclear if many of the issues we discovered
would have been covered by the bug bounty. For example,
we assume an attacker with root privileges on-device, and the
bug bounty refuses attacks that require physical access. Since
our development used manual jail-breaking techniques which
require physical access, unlike a nation-state (which is likely
to use zero-day vulnerabilities allowing remote exploitation),
this restriction would exclude all of our device-side attacks.
Further, the bounty puts MITM attacks explicitly out of scope,
which would remove the sidechannel attack, or the analysis
of the potential attacks from an adversary that controls the
API server.

22The vendor shared additional information, but as those details were part
of confidential communications in the vulnerability disclosure process they
are not included in this paper. Nothing provided by the vendor contradicts
the factual findings in this paper.
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We conclude that the bug bounty is not particularly relevant
to improving the security of this system, and serves as an
example of how such engagements may not be as effective as
one may hope.

A Note on Transparency: Increased transparency would
have likely helped Voatz better secure their system. None of
the vulnerabilities we discovered are novel; indeed, sidechan-
nel attacks are well known in the cryptographic engineering
and in the research literature, and many of the other issues
appear to be the result of poor design. Had Voatz been more
public about their system, these faults would have been easily
recognizable.

It is also clear that Voatz’s lack of transparency did not sig-
nificantly hinder our ability to discover the flaws presented in
this paper, and will similarly fail to prevent a well-resourced
adversary from doing the same. If anything, an intelligence
agency is less likely to take the considerable time and effort
we expended to comply with the law. In our analysis, we
never intentionally connected to Voatz’s servers, and retar-
geted all communication (including Crashlytics, Jumio, and
Voatz’s API server) to our own infrastructure. Criminals or
foreign intelligence agencies, on the other hand, would likely
have no qualms about disrupting normal operations, including
by connecting to Voatz’s servers or attacking Voatz directly.
Such attackers will therefore have an easier time discovering
exploitable vulnerabilities, and can potentially discover flaws
we were unable to find; it is possible that Voatz’s backend,
server infrastructure, blockchain implementation, and other
parts of their service have issues that are impossible to analyze
without further access.

Finally, the lack of information available to the user sur-
rounding the use of third party services is ethically dubious.
As mentioned in §4.2, the only notification we discovered
that indicates to the user that Jumio exists is the logo placed
in the lower right corner of the app’s photo, and we found
no indicator that Zimperium or Crashlytics are being used at
all. Further, while the privacy policy does state that “We may
transfer Personal Information to third parties for the purpose
of providing the Services,” it never discloses what informa-
tion or to whom. A reasonable person may misunderstand
and assume that their data, particularly their ID information,
is only being shared with Voatz. While it is disclosed in a
general sense in the privacy policy, we believe that voting
systems, as a crucial civil process, should be held to a much
higher standard.

Conclusion: Beginning with West Virginia, Utah, and Col-
orado, the US has ventured down the path of Internet voting.
Despite the concern expressed by experts, one company has
sold the promise of secure mobile voting, using biometrics,
blockchain, and hardware-backed cryptography.

Yet our analysis has shown that this application is not se-
cure. A passive network adversary can discover a user’s vote,

and an active one can disrupt transmission in response. An
attacker that controls a user’s device also controls their vote,
easily brushing aside the app’s built-in countermeasures. And
our analysis of the protocol shows that one who controls the
server likely has full power to observe, alter, and add votes as
they please.

A natural question may be why such a service was fielded
in the first place. Speaking to the Harvard Business Review,
Voatz backer and political philanthropist Bradley Tusk stated:

It’s not that the cybersecurity people are bad people
per se. I think it’s that they are solving for one
situation, and I am solving for another. They want
zero technology risk in any way, shape, or form. [...]
But in my view, then you can’t resolve the issues
on guns, on climate, on immigration, because the
middle 70% doesn’t participate in primaries [...] I
am solving for the problem of turnout. [61]

While we appreciate and share Tusk’s desire to increase
voter participation, we do not agree that the security risks
in this domain are negligible; we believe that the issues pre-
sented in this work outweigh the potential gains in turnout.23

As we have shown in this paper, vulnerabilities in Voatz and
the problems caused by a lack of transparency are very real;
the choice here is not about turnout, but about an adversary
controlling the election result and a loss of voter privacy, im-
pugning the integrity of the election.

Given the severity of failings discussed in this paper, the
lack of transparency, the risks to voter privacy, and the trivial
nature of the attacks, we suggest that any near-future plans
to use this app for high-stakes elections be abandoned. We
further recommend that any future designs for voting systems
(and related systems such as e-pollbooks) be made public,
and that their details, source, threat model, as well as social
and human processes be available for public scrutiny.

Note that all attacks presented in this paper are viable re-
gardless of the app’s purported use of a blockchain, biomet-
rics, hardware-backed enclaves, and mixnets. We join other
researchers in remaining skeptical of the security provided by
blockchain-based solutions to voting [37, 50, 51], and believe
that this serves as an object lesson in security — that the pur-
ported use of a series of tools does not indicate that a solution
provides any real guarantees of security.

It remains unclear if any electronic-only mobile or Inter-
net voting system can practically overcome the stringent se-
curity requirements on election systems. Indeed, this work
adds to the litany of serious flaws discovered in electronic-
only approaches, and supports the conclusion that the current
standard — software independent [52] systems using voter-
verified paper ballots and Risk Limiting Audits [44] — remain

23Indeed, it is unclear if mobile and internet voting actually increases voter
turnout. A study from Switzerland [31] finds, somewhat surprisingly, no
statistically significant increase in voter participation over more traditional
forms of balloting.
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the most secure option. It is the burden of the developer of
any system to prove that their system is as secure, to both the
public and the security community, before it can be trusted as
a crucial component in the democratic process.
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We felt that it was important to discuss these in attempting to
better understand the intended threat model. Below are quotes
directly from the FAQ at the time of writing, and our analysis
of these claims given the exploration in this paper.

First, only recently-manufactured smartphone mod-
els from Apple, Samsung and Google are sup-
ported with Voatz. These devices are built with se-
curity features, like fingerprint and facial recog-
nition, that extend far beyond standard browsers
running on a potentially-compromised PC for voter
authentication Second, modern smartphones pro-
vide hardware-based security to store private keys
which, in turn, allow highly secure, encrypted trans-
actions to be conducted over the public Internet.

While Voatz does use the Android Keystore to encrypt the
PIN, the PIN itself is not stored in a hardware enclave. It is
therefore possible for an adversary with root access to the
device to exfiltrate the PIN and all data protected by the PIN,
as mentioned in §5.1.2.

The Voatz app takes advantage of the capabilities
of the supported smartphones, which can detect if
the operating system has been tampered with (e.g.
an operation known as a “jailbreak”). The Voatz
app does not permit a voter to vote if the operating
system has been compromised.

Although the app does attempt to detect such jailbreaks, we
believe that the app is unable to prevent targeted attacks that
disable Zimperium §5.1.1. Other attempts to detect jailbreaks
(e.g. Google’s safetynet) are also commonly defeated via
readily available tools like magiskHide. Further, it is worth
mentioning that device exploitation is not equivalent to jail-
breaking the device; an attacker can gain root privileges via,
say, an exploit into the Android kernel without persistence.

If a device is compromised, the Voatz platform goes
to significant lengths to prevent a vote from be-
ing submitted. Beyond only operating with certain
classes of smartphones with the latest security fea-
tures, Voatz ensures end-to-end vote encryption and
uses multiple approaches for malware detection.

Voatz implements its device-restriction via filtering on the
Google Play Store. While this prevents honest users from
voting an outdated devices, there is no barrier to an attacker in-
stalling it on any chosen device. The app does check whether
it was installed from the Play store or sideloaded, but this is
trivial to defeat by text-editing the app’s shared preferences.
We hence experienced little barrier to running and attacking
the app on an unsupported Xiaomi Mi 4i.

As far as we have been able to discern, the Voatz app uses
only one malware detection utility – Zimperium. It is possible

the server is running some sort of malware detection as well,
though we are unable to confirm this.

Finally, it is unclear why end-to-end encryption is men-
tioned. First, a natural question is what the vendor considers
the “end” at which a vote can be unencrypted. Second, if
the device is considered an “end” here, it is unclear how this
encryption helps if the device performing the cryptography is
infected.

The Voatz app is built with security measures
embedded in qualified smartphones and employs
blockchain technology to ensure that, once submit-
ted, votes are verified and immutably stored on mul-
tiple, geographically diverse verifying servers

We have no visibility into the Voatz backend, so it’s pos-
sible that a blockchain is used in vote storage. However, we
found no reference to the blockchain within the app itself.
Further, given the attacks we have outlined, it is unclear if
the immutability provided by the blockchain is particularly
helpful.

In addition, Voatz generates a voter-verified audit
trail with each vote cast. Upon casting a vote, voters
also receive an automatic, digitally-signed receipt
with their selections in order to review that their
vote was recorded properly. The election organizer
also receives an anonymized copy of the digital
receipt, ensuring that a post-election audit may be
conducted between the paper trail, the anonymized
receipt, and the blockchain.

Voter verifiable audit trails are commonly defined in the
literature as the voter being able to see the ballot of record –
that is, a ballot that is actually counted by the final tally. We
find no indication that voters are able to query the blockchain
(or see proofs of inclusion) directly to confirm that their vote
was recorded.

Beyond enabling multiple audit trails, Voatz has
submitted the smartphone voting app to indepen-
dent third party security firms for audit and under-
goes frequent, rigorous, ongoing “red-team” test-
ing. In addition, Voatz is the 1st elections company
in the world to run an open bug bounty program on
HackerOne for community vetting of its upcoming
platform releases.

At the time of our writing, and to the best of our knowledge,
no other security audit appears to have been released publicly.
Further, the bug bounty from HackerOne states that "Attacks
requiring MITM or physical access to a user’s device" are
out of scope. Note that these could be construed to include
many of the attacks we discovered, and certainly includes the
sidechannel attack.
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Once submitted, all information is anonymized,
routed via a “mixnet” and posted to the blockchain.

We cannot confirm, or find any evidence of, the anonymity
guarantees claimed here. We can report that the Voatz
app initially transmits vote information by HTTPS to
voatzapi.nimsim.com, via GET and POST requests.

Yes, a paper ballot is generated on election night
for every mobile vote recorded on the blockchain
and the printed ballots are tallied using the stan-
dard counting process at each participating county.
This also facilitates a post-election audit by com-
paring the paper ballots with the anonymized voter-
verified digital receipts generated at the time of vote
submission.

See voter verifiable ballot of record discussion above.

Once the voter is verified, election jurisdictions
initiate the process by sending a qualified voter
a mobile ballot. Contained in the mobile ballot
are “tokens“ — think of them as potential votes —
which are cryptographically tied to a candidate or
ballot measure question. The number of tokens a
given voter receives is the same as the number of
ovals he or she would have received on a paper
ballot handed out at the voter’s precinct or sent
through the mail. The voter then makes their de-
sired selections on the Voatz app on their smart-
phone. These selections alter the tokens (like filling
in a ballot oval). Overvotes are prevented, as each
voter only receives a total number of tokens as they
have potential votes. Once submitted, the votes for
choices on the ballot are verified by multiple dis-
tributed servers called “verifiers”, or validating
nodes. Upon verification, the token is debited (i.e.
subtracted) from the voter’s ledger and credited (i.e.
added) to the candidate’s ledger. The blockchain
on every verifier is automatically updated and the
process repeats as additional voters submit their
selection

We again find little evidence of the use of crypto tokens or
the blockchain. Such an algorithm could be done server-side,
but it is unclear if this is at all relevant to the security of the
system.

Blockchain technology, when used for financial
transactions like Bitcoin, cannot be totally anony-
mous (rendering the term “pseudonymous”), how-
ever, when used in voting with the Voatz application,
the identity of the voter is doubly anonymized: first
by the smartphone, and second by the blockchain
server network.

A key question here is “pseudonymous with respect to
what adversary?” We find that both Voatz’s server and Jumio
receive quite a bit of personally identifiable information about
the user, and a the API server can clearly link the voter and
their ballot if it proved to be malicious. Hopefully Voatz and
Jumio delete and do not use such information, but this claim
is very unclear.

Detecting a compromised mobile network is partic-
ularly challenging for a mobile application, which
is why ensuring end-to-end vote encryption and
vetting the certificates represented by unique IDs
stored on the smartphone are two of the approaches
we use to mitigate a compromised mobile network.

We address the end-to-end confusion above, but it is worth
noting that A. The unique IDs stored on-device are not cer-
tificates in the cryptographic sense, and B. nothing in this
paragraph could be construed as preventing the sidechannel
attack presented in §5.

B List of Third Parties Used

Voatz makes extensive use of third-party libraries from at
least 20 different vendors. We have not confirmed that all of
these libraries are actively used by the app, but that they are
included in code. Further, a large swath of Voatz’s code is
obfuscated, so there may be further libraries used that we are
unaware of.

• Jumio

• Zimperium

• Amazon AWS

• Realm DB

• Google’s Firebase / Crashlytics, gson, protobufs, zxking
libraries

• Datatheorem’s TrustKit Android

• Facebook’s SoLoader (https://github.com/
facebook/SoLoader) and fresco (https:
//github.com/facebook/fresco)

• Keepsafe’s relinker (https://github.com/
KeepSafe/ReLinker)

• Samsung’s knox libraries

• Microblink’s data capture libraries

• Takisoft’s Preference Manager (https://github.com/
takisoft/preferencex-android)

• MichaelRocks libphonenumber (https://github.
com/MichaelRocks/libphonenumber-android)
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• ReactiveX http://reactivex.io/

• Relex CircleIndicator https://github.com/
ongakuer/CircleIndicator

• zhanghai material progressbar https://github.com/
zhanghai/MaterialProgressBar

• Square OkHTTP https://square.github.io/
okhttp/ and Retrofit https://square.github.io/
retrofit/

• JetBrains Anko https://github.com/Kotlin/anko

• Joda.time https://www.joda.org/joda-time/

• Jake Wharton’s Timber logging https://github.com/
JakeWharton/timber

• ChrisJenX’s calligraphy font libraries https://github.
com/chrisjenx/Calligraphy
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